Summary and print function for Munich-chain-ladder
summary.MunichChainLadder.Rd
summary
and print
methods for a MunichChainLadder
object
Details
print.MunichChainLadder
calls summary.MunichChainLadder
and
prints a formatted version of the summary.
Value
summary.MunichChainLadder
gives a list of two elements back
- ByOrigin
data frame with Latest Paid (latest actual paid claims costs), Latest Incurred (latest actual incurred claims position), Latest P/I Ratio (ratio of latest paid/incurred claims), Ult. Paid (estimate ultimate claims cost based on the paid triangle), Ult. Incurred (estimate ultimate claims cost based on the incurred triangle),Ult. P/I Ratio (ratio of ultimate paid forecast / ultimate incurred forecast)
- Totals
data frame of totals over all origin periods. The items follow the same naming convention as in
ByOrigin
above
See also
See also MunichChainLadder
,
plot.MunichChainLadder
Examples
M <- MunichChainLadder(MCLpaid, MCLincurred)
#> Warning: 'loglinear' model to estimate sigma_n doesn't appear appropriate.
#> p-value > 5.
#> est.sigma will be overwritten to 'Mack'.
#> Mack's estimation method will be used instead.
#> Warning: 'loglinear' model to estimate sigma_n doesn't appear appropriate.
#> p-value > 5.
#> est.sigma will be overwritten to 'Mack'.
#> Mack's estimation method will be used instead.
M
#> MunichChainLadder(Paid = MCLpaid, Incurred = MCLincurred)
#>
#> Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred
#> 1 2,131 2,174 0.980 2,131 2,174
#> 2 2,348 2,454 0.957 2,385 2,443
#> 3 4,494 4,644 0.968 4,554 4,634
#> 4 5,850 6,142 0.952 6,070 6,182
#> 5 4,648 4,852 0.958 4,879 4,958
#> 6 4,010 4,406 0.910 4,599 4,672
#> 7 2,044 5,022 0.407 7,505 7,655
#> Ult. P/I Ratio
#> 1 0.980
#> 2 0.976
#> 3 0.983
#> 4 0.982
#> 5 0.984
#> 6 0.984
#> 7 0.980
#>
#> Totals
#> Paid Incurred P/I Ratio
#> Latest: 25,525 29,694 0.86
#> Ultimate: 32,121 32,720 0.98
summary(M)
#> $ByOrigin
#> Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred
#> 1 2131 2174 0.9802208 2131.000 2174.000
#> 2 2348 2454 0.9568052 2384.842 2443.222
#> 3 4494 4644 0.9677003 4553.624 4634.358
#> 4 5850 6142 0.9524585 6069.509 6182.347
#> 5 4648 4852 0.9579555 4878.950 4957.805
#> 6 4010 4406 0.9101226 4598.996 4672.402
#> 7 2044 5022 0.4070092 7504.576 7655.378
#> Ult. P/I Ratio
#> 1 0.9802208
#> 2 0.9761052
#> 3 0.9825792
#> 4 0.9817483
#> 5 0.9840948
#> 6 0.9842894
#> 7 0.9803012
#>
#> $Totals
#> Paid Incurred P/I Ratio
#> Latest: 25525.0 29694.00 0.8596013
#> Ultimate: 32121.5 32719.51 0.9817230
#>
summary(M)$ByOrigin
#> Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred
#> 1 2131 2174 0.9802208 2131.000 2174.000
#> 2 2348 2454 0.9568052 2384.842 2443.222
#> 3 4494 4644 0.9677003 4553.624 4634.358
#> 4 5850 6142 0.9524585 6069.509 6182.347
#> 5 4648 4852 0.9579555 4878.950 4957.805
#> 6 4010 4406 0.9101226 4598.996 4672.402
#> 7 2044 5022 0.4070092 7504.576 7655.378
#> Ult. P/I Ratio
#> 1 0.9802208
#> 2 0.9761052
#> 3 0.9825792
#> 4 0.9817483
#> 5 0.9840948
#> 6 0.9842894
#> 7 0.9803012