Prediction of a claims triangle
predict.TriangleModel.Rd
The function is internally used by MackChainLadder
to forecast future claims.
See also
See also chainladder
, MackChainLadder
Examples
RAA
#> dev
#> origin 1 2 3 4 5 6 7 8 9 10
#> 1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
#> 1982 106 4285 5396 10666 13782 15599 15496 16169 16704 NA
#> 1983 3410 8992 13873 16141 18735 22214 22863 23466 NA NA
#> 1984 5655 11555 15766 21266 23425 26083 27067 NA NA NA
#> 1985 1092 9565 15836 22169 25955 26180 NA NA NA NA
#> 1986 1513 6445 11702 12935 15852 NA NA NA NA NA
#> 1987 557 4020 10946 12314 NA NA NA NA NA NA
#> 1988 1351 6947 13112 NA NA NA NA NA NA NA
#> 1989 3133 5395 NA NA NA NA NA NA NA NA
#> 1990 2063 NA NA NA NA NA NA NA NA NA
CL <- chainladder(RAA)
CL
#> $Models
#> $Models[[1]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 2.999
#>
#>
#> $Models[[2]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.624
#>
#>
#> $Models[[3]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.271
#>
#>
#> $Models[[4]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.172
#>
#>
#> $Models[[5]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.113
#>
#>
#> $Models[[6]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.042
#>
#>
#> $Models[[7]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.033
#>
#>
#> $Models[[8]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.017
#>
#>
#> $Models[[9]]
#>
#> Call:
#> lm(formula = y ~ x + 0, data = data.frame(x = Triangle[, i],
#> y = Triangle[, i + 1]), weights = weights[, i]/Triangle[,
#> i]^delta[i])
#>
#> Coefficients:
#> x
#> 1.009
#>
#>
#>
#> $Triangle
#> dev
#> origin 1 2 3 4 5 6 7 8 9 10
#> 1981 5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
#> 1982 106 4285 5396 10666 13782 15599 15496 16169 16704 NA
#> 1983 3410 8992 13873 16141 18735 22214 22863 23466 NA NA
#> 1984 5655 11555 15766 21266 23425 26083 27067 NA NA NA
#> 1985 1092 9565 15836 22169 25955 26180 NA NA NA NA
#> 1986 1513 6445 11702 12935 15852 NA NA NA NA NA
#> 1987 557 4020 10946 12314 NA NA NA NA NA NA
#> 1988 1351 6947 13112 NA NA NA NA NA NA NA
#> 1989 3133 5395 NA NA NA NA NA NA NA NA
#> 1990 2063 NA NA NA NA NA NA NA NA NA
#>
#> $delta
#> [1] 1 1 1 1 1 1 1 1 1
#>
#> $weights
#> dev
#> origin 1 2 3 4 5 6 7 8 9 10
#> 1981 1 1 1 1 1 1 1 1 1 1
#> 1982 1 1 1 1 1 1 1 1 1 NA
#> 1983 1 1 1 1 1 1 1 1 NA NA
#> 1984 1 1 1 1 1 1 1 NA NA NA
#> 1985 1 1 1 1 1 1 NA NA NA NA
#> 1986 1 1 1 1 1 NA NA NA NA NA
#> 1987 1 1 1 1 NA NA NA NA NA NA
#> 1988 1 1 1 NA NA NA NA NA NA NA
#> 1989 1 1 NA NA NA NA NA NA NA NA
#> 1990 1 NA NA NA NA NA NA NA NA NA
#>
#> attr(,"class")
#> [1] "ChainLadder" "TriangleModel" "list"
predict(CL)
#> dev
#> origin 1 2 3 4 5 6 7 8
#> 1981 5012 8269.000 10907.000 11805.00 13539.00 16181.00 18009.00 18608.00
#> 1982 106 4285.000 5396.000 10666.00 13782.00 15599.00 15496.00 16169.00
#> 1983 3410 8992.000 13873.000 16141.00 18735.00 22214.00 22863.00 23466.00
#> 1984 5655 11555.000 15766.000 21266.00 23425.00 26083.00 27067.00 27967.34
#> 1985 1092 9565.000 15836.000 22169.00 25955.00 26180.00 27277.85 28185.21
#> 1986 1513 6445.000 11702.000 12935.00 15852.00 17649.38 18389.50 19001.20
#> 1987 557 4020.000 10946.000 12314.00 14428.00 16063.92 16737.55 17294.30
#> 1988 1351 6947.000 13112.000 16663.88 19524.65 21738.45 22650.05 23403.47
#> 1989 3133 5395.000 8758.905 11131.59 13042.60 14521.43 15130.38 15633.68
#> 1990 2063 6187.677 10045.834 12767.13 14958.92 16655.04 17353.46 17930.70
#> dev
#> origin 9 10
#> 1981 18662.00 18834.00
#> 1982 16704.00 16857.95
#> 1983 23863.43 24083.37
#> 1984 28441.01 28703.14
#> 1985 28662.57 28926.74
#> 1986 19323.01 19501.10
#> 1987 17587.21 17749.30
#> 1988 23799.84 24019.19
#> 1989 15898.45 16044.98
#> 1990 18234.38 18402.44