Methods for BootChainLadder objects
summary.BootChainLadder.Rd
summary
, print
, mean
, and quantile
methods for BootChainLadder
objects
Usage
# S3 method for class 'BootChainLadder'
summary(object, probs=c(0.75,0.95), ...)
# S3 method for class 'BootChainLadder'
print(x, probs=c(0.75,0.95), ...)
# S3 method for class 'BootChainLadder'
quantile(x, probs=c(0.75, 0.95), na.rm = FALSE,
names = TRUE, type = 7,...)
# S3 method for class 'BootChainLadder'
mean(x, ...)
# S3 method for class 'BootChainLadder'
residuals(object, ...)
Arguments
- x, object
output from
BootChainLadder
- probs
numeric vector of probabilities with values in [0,1], see
quantile
for more help- na.rm
logical; if true, any
NA
andNaN
's are removed from 'x' before the quantiles are computed, seequantile
for more help- names
logical; if true, the result has a
names
attribute. Set toFALSE
for speedup with many 'probs', seequantile
for more help- type
an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used, see
quantile
- ...
further arguments passed to or from other methods
Details
print.BootChainLadder
calls summary.BootChainLadder
and
prints a formatted version of the summary.
residuals.BootChainLadder
gives the residual triangle of
the expected chain-ladder minus the actual triangle back.
Value
summary.BootChainLadder
, mean.BootChainLadder
, and
quantile.BootChainLadder
, give a list with two elements back:
- ByOrigin
data frame with summary/mean/quantile statistics by origin period
- Totals
data frame with total summary/mean/quantile statistics for all origin period
See also
See also BootChainLadder
Examples
B <- BootChainLadder(RAA, R=999, process.distr="gamma")
B
#> BootChainLadder(Triangle = RAA, R = 999, process.distr = "gamma")
#>
#> Latest Mean Ultimate Mean IBNR IBNR.S.E IBNR 75% IBNR 95%
#> 1981 18,834 18,834 0 0 0 0
#> 1982 16,704 16,883 179 780 220 1,368
#> 1983 23,466 24,112 646 1,304 1,089 3,174
#> 1984 27,067 28,776 1,709 1,991 2,675 5,289
#> 1985 26,180 28,987 2,807 2,434 3,965 7,628
#> 1986 15,852 19,540 3,688 2,441 4,947 8,199
#> 1987 12,314 17,686 5,372 3,126 7,008 11,280
#> 1988 13,112 24,275 11,163 5,075 14,001 20,196
#> 1989 5,395 16,572 11,177 6,377 14,909 23,720
#> 1990 2,063 19,710 17,647 13,552 25,784 41,999
#>
#> Totals
#> Latest: 160,987
#> Mean Ultimate: 215,376
#> Mean IBNR: 54,389
#> IBNR.S.E 19,370
#> Total IBNR 75%: 65,617
#> Total IBNR 95%: 89,191
summary(B)
#> $ByOrigin
#> Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%
#> 1981 18834 18834.00 0.0000 0.000 0.0000 0.000
#> 1982 16704 16883.32 179.3249 779.533 220.3238 1367.977
#> 1983 23466 24111.65 645.6530 1304.426 1088.9090 3173.708
#> 1984 27067 28776.20 1709.1990 1990.882 2674.8965 5289.365
#> 1985 26180 28987.16 2807.1556 2434.282 3964.5693 7628.258
#> 1986 15852 19539.69 3687.6936 2440.635 4946.8657 8198.906
#> 1987 12314 17686.37 5372.3663 3125.773 7007.9105 11280.426
#> 1988 13112 24275.25 11163.2478 5075.214 14000.8210 20195.902
#> 1989 5395 16572.34 11177.3363 6377.035 14909.4309 23719.853
#> 1990 2063 19710.25 17647.2453 13552.213 25783.6734 41999.016
#>
#> $Totals
#> Totals
#> Latest: 160987.00
#> Mean Ultimate: 215376.22
#> Mean IBNR: 54389.22
#> SD IBNR: 19370.14
#> Total IBNR 75%: 65617.22
#> Total IBNR 95%: 89191.21
#>
mean(B)
#> $ByOrigin
#> Mean IBNR
#> 1981 0.0000
#> 1982 179.3249
#> 1983 645.6530
#> 1984 1709.1990
#> 1985 2807.1556
#> 1986 3687.6936
#> 1987 5372.3663
#> 1988 11163.2478
#> 1989 11177.3363
#> 1990 17647.2453
#>
#> $Totals
#> Total
#> Mean IBNR: 54389.22
#>
quantile(B, c(0.75,0.95,0.99, 0.995))
#> $ByOrigin
#> IBNR 75% IBNR 95% IBNR 99% IBNR 99.5%
#> 1981 0.0000 0.000 0.000 0.000
#> 1982 220.3238 1367.977 3060.579 3629.873
#> 1983 1088.9090 3173.708 4960.796 6270.826
#> 1984 2674.8965 5289.365 7991.119 9064.156
#> 1985 3964.5693 7628.258 10336.713 11558.160
#> 1986 4946.8657 8198.906 10951.729 12853.460
#> 1987 7007.9105 11280.426 14513.349 17229.377
#> 1988 14000.8210 20195.902 26784.041 28168.720
#> 1989 14909.4309 23719.853 28558.182 32446.893
#> 1990 25783.6734 41999.016 53969.268 61867.263
#>
#> $Totals
#> Totals
#> IBNR 75%: 65617.22
#> IBNR 95%: 89191.21
#> IBNR 99%: 107677.06
#> IBNR 99.5%: 121189.77
#>