
Methods for BootChainLadder objects
summary.BootChainLadder.Rdsummary, print, mean, and quantile
methods for BootChainLadder objects
Usage
# S3 method for class 'BootChainLadder'
summary(object, probs=c(0.75,0.95), ...)
# S3 method for class 'BootChainLadder'
print(x, probs=c(0.75,0.95), ...)
# S3 method for class 'BootChainLadder'
quantile(x, probs=c(0.75, 0.95), na.rm = FALSE,
names = TRUE, type = 7,...)
# S3 method for class 'BootChainLadder'
mean(x, ...)
# S3 method for class 'BootChainLadder'
residuals(object, ...)Arguments
- x, object
output from
BootChainLadder- probs
numeric vector of probabilities with values in [0,1], see
quantilefor more help- na.rm
logical; if true, any
NAandNaN's are removed from 'x' before the quantiles are computed, seequantilefor more help- names
logical; if true, the result has a
namesattribute. Set toFALSEfor speedup with many 'probs', seequantilefor more help- type
an integer between 1 and 9 selecting one of the nine quantile algorithms detailed below to be used, see
quantile- ...
further arguments passed to or from other methods
Details
print.BootChainLadder calls summary.BootChainLadder and
prints a formatted version of the summary.
residuals.BootChainLadder gives the residual triangle of
the expected chain-ladder minus the actual triangle back.
Value
summary.BootChainLadder, mean.BootChainLadder, and
quantile.BootChainLadder, give a list with two elements back:
- ByOrigin
data frame with summary/mean/quantile statistics by origin period
- Totals
data frame with total summary/mean/quantile statistics for all origin period
See also
See also BootChainLadder
Examples
B <- BootChainLadder(RAA, R=999, process.distr="gamma")
B
#> BootChainLadder(Triangle = RAA, R = 999, process.distr = "gamma")
#>
#> Latest Mean Ultimate Mean IBNR IBNR.S.E IBNR 75% IBNR 95%
#> 1981 18,834 18,834 0 0 0 0
#> 1982 16,704 16,911 207 717 204 1,500
#> 1983 23,466 24,130 664 1,303 1,174 3,251
#> 1984 27,067 28,749 1,682 1,876 2,627 5,229
#> 1985 26,180 28,981 2,801 2,225 3,969 7,003
#> 1986 15,852 19,572 3,720 2,510 5,105 8,553
#> 1987 12,314 17,756 5,442 3,283 7,325 11,542
#> 1988 13,112 24,211 11,099 5,044 14,168 20,025
#> 1989 5,395 16,048 10,653 6,142 14,166 22,016
#> 1990 2,063 18,694 16,631 13,628 23,333 41,383
#>
#> Totals
#> Latest: 160,987
#> Mean Ultimate: 213,885
#> Mean IBNR: 52,898
#> IBNR.S.E 18,440
#> Total IBNR 75%: 63,378
#> Total IBNR 95%: 86,371
summary(B)
#> $ByOrigin
#> Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%
#> 1981 18834 18834.00 0.0000 0.0000 0.0000 0.000
#> 1982 16704 16911.25 207.2453 717.3973 204.0868 1500.393
#> 1983 23466 24130.29 664.2855 1303.4774 1173.6871 3251.474
#> 1984 27067 28748.76 1681.7586 1875.7839 2626.7067 5228.895
#> 1985 26180 28980.64 2800.6365 2225.4811 3968.9805 7003.371
#> 1986 15852 19571.81 3719.8056 2510.0076 5105.1333 8552.575
#> 1987 12314 17755.51 5441.5072 3283.2254 7325.0361 11541.973
#> 1988 13112 24211.45 11099.4500 5044.1807 14168.2720 20025.453
#> 1989 5395 16047.77 10652.7681 6142.1904 14165.8420 22016.093
#> 1990 2063 18693.73 16630.7329 13627.7411 23333.2733 41383.161
#>
#> $Totals
#> Totals
#> Latest: 160987.00
#> Mean Ultimate: 213885.19
#> Mean IBNR: 52898.19
#> SD IBNR: 18440.27
#> Total IBNR 75%: 63378.28
#> Total IBNR 95%: 86370.89
#>
mean(B)
#> $ByOrigin
#> Mean IBNR
#> 1981 0.0000
#> 1982 207.2453
#> 1983 664.2855
#> 1984 1681.7586
#> 1985 2800.6365
#> 1986 3719.8056
#> 1987 5441.5072
#> 1988 11099.4500
#> 1989 10652.7681
#> 1990 16630.7329
#>
#> $Totals
#> Total
#> Mean IBNR: 52898.19
#>
quantile(B, c(0.75,0.95,0.99, 0.995))
#> $ByOrigin
#> IBNR 75% IBNR 95% IBNR 99% IBNR 99.5%
#> 1981 0.0000 0.000 0.000 0.000
#> 1982 204.0868 1500.393 3390.162 3905.316
#> 1983 1173.6871 3251.474 4849.996 5233.261
#> 1984 2626.7067 5228.895 7672.609 8328.949
#> 1985 3968.9805 7003.371 9103.607 9994.590
#> 1986 5105.1333 8552.575 11414.829 12731.768
#> 1987 7325.0361 11541.973 15163.927 16641.212
#> 1988 14168.2720 20025.453 25195.163 26429.739
#> 1989 14165.8420 22016.093 28631.988 29945.831
#> 1990 23333.2733 41383.161 55580.473 67118.348
#>
#> $Totals
#> Totals
#> IBNR 75%: 63378.28
#> IBNR 95%: 86370.89
#> IBNR 99%: 106649.40
#> IBNR 99.5%: 115226.68
#>