Skip to contents

Extract residuals of a MackChainLadder model by origin-, calendar- and development period.

Usage

# S3 method for class 'MackChainLadder'
residuals(object, ...)

Arguments

object

output of MackChainLadder

...

not in use

Value

The function returns a data.frame of residuals and standardised residuals by origin-, calendar- and development period.

Author

Markus Gesmann

See also

Examples


 RAA
#>       dev
#> origin    1     2     3     4     5     6     7     8     9    10
#>   1981 5012  8269 10907 11805 13539 16181 18009 18608 18662 18834
#>   1982  106  4285  5396 10666 13782 15599 15496 16169 16704    NA
#>   1983 3410  8992 13873 16141 18735 22214 22863 23466    NA    NA
#>   1984 5655 11555 15766 21266 23425 26083 27067    NA    NA    NA
#>   1985 1092  9565 15836 22169 25955 26180    NA    NA    NA    NA
#>   1986 1513  6445 11702 12935 15852    NA    NA    NA    NA    NA
#>   1987  557  4020 10946 12314    NA    NA    NA    NA    NA    NA
#>   1988 1351  6947 13112    NA    NA    NA    NA    NA    NA    NA
#>   1989 3133  5395    NA    NA    NA    NA    NA    NA    NA    NA
#>   1990 2063    NA    NA    NA    NA    NA    NA    NA    NA    NA
 MCL=MackChainLadder(RAA)
 MCL  
#> MackChainLadder(Triangle = RAA)
#> 
#>      Latest Dev.To.Date Ultimate   IBNR Mack.S.E CV(IBNR)
#> 1981 18,834       1.000   18,834      0        0      NaN
#> 1982 16,704       0.991   16,858    154      143    0.928
#> 1983 23,466       0.974   24,083    617      592    0.959
#> 1984 27,067       0.943   28,703  1,636      713    0.436
#> 1985 26,180       0.905   28,927  2,747    1,452    0.529
#> 1986 15,852       0.813   19,501  3,649    1,995    0.547
#> 1987 12,314       0.694   17,749  5,435    2,204    0.405
#> 1988 13,112       0.546   24,019 10,907    5,354    0.491
#> 1989  5,395       0.336   16,045 10,650    6,332    0.595
#> 1990  2,063       0.112   18,402 16,339   24,566    1.503
#> 
#>               Totals
#> Latest:   160,987.00
#> Dev:            0.76
#> Ultimate: 213,122.23
#> IBNR:      52,135.23
#> Mack.S.E   26,880.74
#> CV(IBNR):       0.52

 residuals(MCL)
#>    origin.period dev.period cal.period     residuals standard.residuals
#> 1           1981          1       1981 -6.763786e+03      -0.6518587127
#> 2           1982          1       1982  3.967068e+03       2.3131310956
#> 3           1983          1       1983 -1.235813e+03      -0.1379704193
#> 4           1984          1       1984 -5.406373e+03      -0.5001778243
#> 5           1985          1       1985  6.289700e+03       1.1694700671
#> 6           1986          1       1986  1.906970e+03       0.3043328370
#> 7           1987          1       1987  2.349357e+03       0.6038940301
#> 8           1988          1       1988  2.894866e+03       0.4869681180
#> 9           1989          1       1989 -4.001991e+03      -0.4626632036
#> 10          1981          2       1982 -2.517910e+03      -0.8955622462
#> 11          1982          2       1983 -1.560795e+03      -0.7431309175
#> 12          1983          2       1984 -7.257166e+02      -0.2492715390
#> 13          1984          2       1985 -2.993805e+03      -0.9307852849
#> 14          1985          2       1986  3.070049e+02       0.1028219694
#> 15          1986          2       1987  1.238396e+03       0.4903618988
#> 16          1987          2       1988  4.419439e+03       2.1673048699
#> 17          1988          2       1989  1.833387e+03       0.7025323710
#> 18          1981          3       1983 -2.056577e+03      -0.8025136628
#> 19          1982          3       1984  3.808288e+03       2.0377822470
#> 20          1983          3       1985 -1.490031e+03      -0.5262744644
#> 21          1984          3       1986  1.229178e+03       0.4128212956
#> 22          1985          3       1987  2.043216e+03       0.6850481136
#> 23          1986          3       1988 -1.936933e+03      -0.7336781618
#> 24          1987          3       1989 -1.597141e+03      -0.6222874301
#> 25          1981          4       1984 -2.926190e+02      -0.3677955805
#> 26          1982          4       1985  1.284918e+03       1.6875563766
#> 27          1983          4       1986 -1.770003e+02      -0.1954209622
#> 28          1984          4       1987 -1.491833e+03      -1.4840033877
#> 29          1985          4       1988 -1.985494e+01      -0.0194638893
#> 30          1986          4       1989  6.963886e+02       0.8419293284
#> 31          1981          5       1985  1.106882e+03       0.9396302313
#> 32          1982          5       1986  2.543295e+02       0.2143062398
#> 33          1983          5       1987  1.354734e+03       1.0102053305
#> 34          1984          5       1988  1.959041e+00       0.0013483019
#> 35          1985          5       1989 -2.717905e+03      -1.8091460074
#> 36          1981          6       1986  1.149456e+03       1.5833277459
#> 37          1982          6       1987 -7.571384e+02      -1.0573998685
#> 38          1983          6       1988 -2.825360e+02      -0.3490423583
#> 39          1984          6       1989 -1.097812e+02      -0.1295670061
#> 40          1981          7       1987 -4.334019e-02      -0.0003377707
#> 41          1982          7       1988  1.575480e+02       1.2823293692
#> 42          1983          7       1989 -1.575046e+02      -1.1656855985
#> 43          1981          8       1988 -2.611540e+02      -1.0000000000
#> 44          1982          8       1989  2.611540e+02       1.0000000000
#>    fitted.value
#> 1     15032.786
#> 2       317.932
#> 3     10227.813
#> 4     16961.373
#> 5      3275.300
#> 6      4538.030
#> 7      1670.643
#> 8      4052.134
#> 9      9396.991
#> 10    13424.910
#> 11     6956.795
#> 12    14598.717
#> 13    18759.805
#> 14    15528.995
#> 15    10463.604
#> 16     6526.561
#> 17    11278.613
#> 18    13861.577
#> 19     6857.712
#> 20    17631.031
#> 21    20036.822
#> 22    20125.784
#> 23    14871.933
#> 24    13911.141
#> 25    13831.619
#> 26    12497.082
#> 27    18912.000
#> 28    24916.833
#> 29    25974.855
#> 30    15155.611
#> 31    15074.118
#> 32    15344.671
#> 33    20859.266
#> 34    26081.041
#> 35    28897.905
#> 36    16859.544
#> 37    16253.138
#> 38    23145.536
#> 39    27176.781
#> 40    18608.043
#> 41    16011.452
#> 42    23623.505
#> 43    18923.154
#> 44    16442.846