Methods for Generic Function Mse
Mse-methods.Rd
Mse
is a generic function to calculate mean square error estimations in the chain-ladder framework.
Usage
Mse(ModelFit, FullTriangles, ...)
# S4 method for class 'GMCLFit,triangles'
Mse(ModelFit, FullTriangles, ...)
# S4 method for class 'MCLFit,triangles'
Mse(ModelFit, FullTriangles, mse.method="Mack", ...)
Arguments
- ModelFit
An object of class "GMCLFit" or "MCLFit".
- FullTriangles
An object of class "triangles". Should be the output from a call of
predict
.- mse.method
Character strings that specify the MSE estimation method. Only works for "MCLFit". Use
"Mack"
for the generazliation of the Mack (1993) approach, and"Independence"
for the conditional resampling approach in Merz and Wuthrich (2008).- ...
Currently not used.
Details
These functions calculate the conditional mean square errors using the recursive formulas in Zhang (2010), which is a generalization of the Mack (1993, 1999) formulas. In the GMCL model, the conditional mean square error for single accident years and aggregated accident years are calcualted as:
$$\hat{mse}(\hat{Y}_{i,k+1}|D)=\hat{B}_k \hat{mse}(\hat{Y}_{i,k}|D) \hat{B}_k + (\hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\hat{Y}_{i,k} \otimes I) + \hat{\Sigma}_{\epsilon_{i_k}}.$$
$$\hat{mse}(\sum^I_{i=a_k}\hat{Y}_{i,k+1}|D)=\hat{B}_k \hat{mse}(\sum^I_{i=a_k+1}\hat{Y}_{i,k}|D) \hat{B}_k + (\sum^I_{i=a_k}\hat{Y}_{i,k}' \otimes I) \hat{\Sigma}_{B_k} (\sum^I_{i=a_k}\hat{Y}_{i,k} \otimes I) + \sum^I_{i=a_k}\hat{\Sigma}_{\epsilon_{i_k}} .$$
In the MCL model, the conditional mean square error from Merz and Wüthrich (2008) is also available, which can be shown to be equivalent as the following:
$$\hat{mse}(\hat{Y}_{i,k+1}|D)=(\hat{\beta}_k \hat{\beta}_k') \odot \hat{mse}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\hat{Y}_{i,k} \hat{Y}_{i,k}') + \hat{\Sigma}_{\epsilon_{i_k}} +\hat{\Sigma}_{\beta_k} \odot \hat{mse}^E(\hat{Y}_{i,k}|D) .$$
$$\hat{mse}(\sum^I_{i=a_k}\hat{Y}_{i,k+1}|D)=(\hat{\beta}_k \hat{\beta}_k') \odot \sum^I_{i=a_k+1}\hat{mse}(\hat{Y}_{i,k}|D) + \hat{\Sigma}_{\beta_k} \odot (\sum^I_{i=a_k}\hat{Y}_{i,k} \sum^I_{i=a_k}\hat{Y}_{i,k}') + \sum^I_{i=a_k}\hat{\Sigma}_{\epsilon_{i_k}} +\hat{\Sigma}_{\beta_k} \odot \sum^I_{i=a_k}\hat{mse}^E(\hat{Y}_{i,k}|D) .$$
For the Mack approach in the MCL model, the cross-product term \(\hat{\Sigma}_{\beta_k} \odot \hat{mse}^E(\hat{Y}_{i,k}|D) \)in the above two formulas will drop out.
Value
Mse
returns an object of class "MultiChainLadderMse" that has the following elements:
- mse.ay
condtional mse for each accdient year
- mse.ay.est
conditional estimation mse for each accdient year
- mse.ay.proc
conditional process mse for each accdient year
- mse.total
condtional mse for aggregated accdient years
- mse.total.est
conditional estimation mse for aggregated accdient years
- mse.total.proc
conditional process mse for aggregated accdient years
- FullTriangles
completed triangles
References
Zhang Y (2010). A general multivariate chain ladder model.Insurance: Mathematics and Economics, 46, pp. 588-599.
Zhang Y (2010). Prediction error of the general multivariate chain ladder model.
Author
Wayne Zhang actuary_zhang@hotmail.com
See also
See also MultiChainLadder.