One year claims development result
CDR.Rd
Standard deviation of the claims development result after one year for the distribution-free chain-ladder model (Mack) and Bootstrap model.
Usage
CDR(x, ...)
# S3 method for class 'MackChainLadder'
CDR(x, dev=1, ...)
# S3 method for class 'BootChainLadder'
CDR(x, probs=c(0.75, 0.95), ...)
# Default S3 method
CDR(x, ...)
Arguments
- x
otput of either
MackChainLadder
orBootChainLadder
- dev
vector of development periods or
"all"
. Currently only applicable forMackChainLadder
output. Defines the years for which the run off claims development result should be returned.- probs
only applicable for
BootChainLadder
output. Define quantiles to be returned.- ...
other arguments
Details
Merz & Wüthrich (2008) derived analytic formulae for the mean square error of prediction of the claims development result for the Mack chain-ladder model after one year assuming:
The opening reserves were set using the pure chain-ladder model (no tail)
Claims develop in the year according to the assumptions underlying Mack's model
Reserves are set after one year using the pure chain-ladder model (no tail)
Value
A data.frame
with various IBNR/reserves and one-year statistics of the
claims development result.
References
Michael Merz, Mario V. Wüthrich. Modelling the claims development result for solvency purposes. Casualty Actuarial Society E-Forum, Fall 2008.
Michael Merz, Mario V. Wüthrich. Claims Run-Off Uncertainty: The Full Picture. Swiss Finance Institute Research Paper No. 14-69. https://www.ssrn.com/abstract=2524352. 2014
Author
Mario Wüthrich and Markus Gesmann
with contributions from Arthur Charpentier and Arnaud Lacoume
for CDR.MackChainLadder
and Giuseppe Crupi and
Markus Gesmann for CDR.BootChainLadder
.
See also
See also MackChainLadder
and BootChainLadder
Examples
# Example from the 2008 Merz, Wuthrich paper mentioned above
MW2008
#> dev
#> origin 1 2 3 4 5 6 7 8 9
#> 1 2202584 3210449 3468122 3545070 3621627 3644636 3669012 3674511 3678633
#> 2 2350650 3553023 3783846 3840067 3865187 3878744 3898281 3902425 NA
#> 3 2321885 3424190 3700876 3798198 3854755 3878993 3898825 NA NA
#> 4 2171487 3165274 3395841 3466453 3515703 3548422 NA NA NA
#> 5 2140328 3157079 3399262 3500520 3585812 NA NA NA NA
#> 6 2290664 3338197 3550332 3641036 NA NA NA NA NA
#> 7 2148216 3219775 3428335 NA NA NA NA NA NA
#> 8 2143728 3158581 NA NA NA NA NA NA NA
#> 9 2144738 NA NA NA NA NA NA NA NA
M <- MackChainLadder(MW2008, est.sigma="Mack")
plot(M)
CDR(M)
#> IBNR CDR(1)S.E. Mack.S.E.
#> 1 0.000 0.0000 0.0000
#> 2 4377.670 566.1744 566.1744
#> 3 9347.477 1486.5603 1563.8075
#> 4 28392.406 3923.0986 4157.2733
#> 5 51444.021 9722.8598 10536.4380
#> 6 111811.123 28442.6216 30319.4638
#> 7 187084.178 20954.2870 35967.0384
#> 8 411864.225 28119.3180 45090.1821
#> 9 1433505.008 53320.8210 69552.3397
#> Total 2237826.107 81080.5468 108401.3875
# Return all run-off result developments
CDR(M, dev="all")
#> IBNR CDR(1)S.E. CDR(2)S.E. CDR(3)S.E. CDR(4)S.E. CDR(5)S.E.
#> 1 0.000 0.0000 0.0000 0.0000 0.0000 0.0000
#> 2 4377.670 566.1744 0.0000 0.0000 0.0000 0.0000
#> 3 9347.477 1486.5603 485.4195 0.0000 0.0000 0.0000
#> 4 28392.406 3923.0986 1305.9869 431.9915 0.0000 0.0000
#> 5 51444.021 9722.8598 3830.3960 1277.0783 423.8641 0.0000
#> 6 111811.123 28442.6216 9689.5440 3820.5641 1274.3261 423.4215
#> 7 187084.178 20954.2870 27423.5036 9340.4725 3684.4291 1229.1060
#> 8 411864.225 28119.3180 20421.8007 26951.8084 9178.4040 3621.3651
#> 9 1433505.008 53320.8210 27782.3071 20193.6339 26778.3919 9118.5624
#> Total 2237826.107 81080.5468 52222.0516 38517.4943 29104.1066 10109.0020
#> CDR(6)S.E. CDR(7)S.E. CDR(8)S.E. CDR(9)S.E. Mack.S.E.
#> 1 0.0000 0.0000 0.0000 0 0.0000
#> 2 0.0000 0.0000 0.0000 0 566.1744
#> 3 0.0000 0.0000 0.0000 0 1563.8075
#> 4 0.0000 0.0000 0.0000 0 4157.2733
#> 5 0.0000 0.0000 0.0000 0 10536.4380
#> 6 0.0000 0.0000 0.0000 0 30319.4638
#> 7 408.6786 0.0000 0.0000 0 35967.0384
#> 8 1208.1604 401.9014 0.0000 0 45090.1821
#> 9 3598.2399 1200.5081 399.4584 0 69552.3397
#> Total 3876.0093 1281.3024 399.4584 0 108401.3875
# Example from the 2014 Merz, Wuthrich paper mentioned above
MW2014
#> dev
#> origin 0 1 2 3 4 5 6 7 8 9 10 11
#> 1 13109 20355 21337 22043 22401 22658 22997 23158 23492 23664 23699 23904
#> 2 14457 22038 22627 23114 23238 23312 23440 23490 23964 23976 24048 24111
#> 3 16075 22672 23753 24052 24206 24757 24786 24807 24823 24888 24986 25401
#> 4 15682 23464 24465 25052 25529 25708 25752 25770 25835 26075 26082 26146
#> 5 16551 23706 24627 25573 26046 26115 26283 26481 26701 26718 26724 26728
#> 6 15439 23796 24866 25317 26139 26154 26175 26205 26764 26818 26836 26959
#> 7 14629 21645 22826 23599 24992 25434 25476 25549 25604 25709 25723 NA
#> 8 17585 26288 27623 27939 28335 28638 28715 28759 29525 30302 NA NA
#> 9 17419 25941 27066 27761 28043 28477 28721 28878 28948 NA NA NA
#> 10 16665 25370 26909 27611 27729 27861 29830 29844 NA NA NA NA
#> 11 15471 23745 25117 26378 26971 27396 27480 NA NA NA NA NA
#> 12 15103 23393 26809 27691 28061 29183 NA NA NA NA NA NA
#> 13 14540 22642 23571 24127 24210 NA NA NA NA NA NA NA
#> 14 14590 22336 23440 24029 NA NA NA NA NA NA NA NA
#> 15 13967 21515 22603 NA NA NA NA NA NA NA NA NA
#> 16 12930 20111 NA NA NA NA NA NA NA NA NA NA
#> 17 12539 NA NA NA NA NA NA NA NA NA NA NA
#> dev
#> origin 12 13 14 15 16
#> 1 23960 23992 23994 24001 24002
#> 2 24252 24538 24540 24550 NA
#> 3 25681 25705 25732 NA NA
#> 4 26150 26167 NA NA NA
#> 5 26735 NA NA NA NA
#> 6 NA NA NA NA NA
#> 7 NA NA NA NA NA
#> 8 NA NA NA NA NA
#> 9 NA NA NA NA NA
#> 10 NA NA NA NA NA
#> 11 NA NA NA NA NA
#> 12 NA NA NA NA NA
#> 13 NA NA NA NA NA
#> 14 NA NA NA NA NA
#> 15 NA NA NA NA NA
#> 16 NA NA NA NA NA
#> 17 NA NA NA NA NA
W <- MackChainLadder(MW2014, est.sigma="Mack")
plot(W)
CDR(W)
#> IBNR CDR(1)S.E. Mack.S.E.
#> 1 0.000000 0.0000000 0.0000000
#> 2 1.022874 0.4083149 0.4083149
#> 3 10.085643 2.5393857 2.5652899
#> 4 21.187574 16.7232632 16.8984949
#> 5 117.662565 156.4022713 157.2756452
#> 6 223.279748 137.6522771 207.1650862
#> 7 361.808180 171.1812092 261.9266093
#> 8 469.408830 70.3161155 292.2622285
#> 9 653.504225 271.6352221 390.5874717
#> 10 1008.763182 310.1268449 502.0606072
#> 11 1011.859648 103.3834357 486.0911099
#> 12 1406.702133 632.6388191 806.9028971
#> 13 1492.903495 315.0489135 793.9381916
#> 14 1917.636398 406.1424672 891.6613403
#> 15 2458.152208 285.2076540 916.4940218
#> 16 3384.341045 668.2337878 1106.1262716
#> 17 9596.552341 733.2222786 1295.6909824
#> Total 24134.870088 1842.8507073 3233.6807352
# Example with the BootChainLadder function, assuming overdispered Poisson model
B <- BootChainLadder(MW2008, process.distr=c("od.pois"))
B
#> BootChainLadder(Triangle = MW2008, process.distr = c("od.pois"))
#>
#> Latest Mean Ultimate Mean IBNR IBNR.S.E IBNR 75% IBNR 95%
#> 1 3,678,633 3,678,633 0 0 0 0
#> 2 3,902,425 3,906,478 4,053 5,483 6,479 14,431
#> 3 3,898,825 3,908,158 9,333 7,691 13,576 22,970
#> 4 3,548,422 3,576,411 27,989 11,954 35,437 49,473
#> 5 3,585,812 3,637,022 51,210 15,773 60,950 79,241
#> 6 3,641,036 3,752,372 111,336 22,264 127,314 148,710
#> 7 3,428,335 3,614,528 186,193 28,383 202,102 232,830
#> 8 3,158,581 3,570,202 411,621 43,594 441,683 487,770
#> 9 2,144,738 3,574,294 1,429,556 101,382 1,491,662 1,602,032
#>
#> Totals
#> Latest: 30,986,807
#> Mean Ultimate: 33,218,098
#> Mean IBNR: 2,231,291
#> IBNR.S.E 132,952
#> Total IBNR 75%: 2,319,624
#> Total IBNR 95%: 2,456,423
CDR(B)
#> IBNR IBNR.S.E CDR(1)S.E CDR(1)75% CDR(1)95%
#> 1 0.000 0.000 0.000 0.00 0.00
#> 2 4053.352 5483.375 5483.375 6479.00 14431.30
#> 3 9332.589 7690.852 6101.008 12265.95 20594.63
#> 4 27989.047 11954.354 10215.147 34481.45 46854.14
#> 5 51210.211 15772.669 10686.849 57025.21 70172.51
#> 6 111336.207 22263.812 16677.877 122893.82 140810.58
#> 7 186193.260 28383.341 18957.276 199120.62 217810.52
#> 8 411620.635 43594.083 33865.996 432812.75 471242.46
#> 9 1429556.088 101382.435 90832.645 1487533.82 1581666.14
#> Total 2231291.389 132952.187 110453.804 2303423.49 2423741.73